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Abstract-The dynamics of a heat-up process in a horizontally enclosed fluid region, with an imposed 
through-flow and subject to weak thermal forcing, is investigated. Based on a boundary layer approach, 
a simple one-dimensional model for the interior fluid region is derived. The predicted response of the 
temperature field agrees well with numerical solutions of the corresponding undegenerate one-dimensional 
problem. The analytical results are in reasonably close agreement with numerical results presented in a 

companion paper by Hyun and Hyun (mt. J. Heat Mnss Transfer 29, 1487-1493 (1986)). 

INTRODUCTION 

A STUDY has been made of the thermal adjustment of 
a stably stratified fluid that is horizontalfy enclosed in 
a straight cylinder with a given through-flow. Cold 
fluid enters the vessel through the porous bottom, is 
heated at the vertical curved wall and leaves it via the 
porous top (see Fig. 1). (The geometry and boundary 
conditions have been chosen in order to simplify the 
analytical treatment). The fluid is assumed subject to 
an impulsive change in its boundary conditions. An 
investigation of the resulting thermal response is the 
purpose of this study. In fact, the problem of transient 
buoyant flows in a contained fluid has received little 
attention in the past, as remarked by Jischke and Doty 
[ 1 J and later by Hyun [2]. 

The present work has partly been motivated by 
preliminary studies of planned commercial salmon 
farming on the Swedish west-coast. Deep-lying water 
is assumed pumped up into semi-enclosed containers 
so as to regulate the temperature of the contained 
water. This is done in order to improve the “en- 
vironmental” conditions for the fish, which among 
other things control their growth. (In addition to this, 
a semi-enclosed container of the assumed type has 
also the advantage that the risk of unintentional eutro- 
phication in a neighbourhood of the farming site can 
be minimized by simple means.) Another motivation 
for this study is the possibility of storing thermal 
energy in a single-phase fluid, contained in a simply- 
connected vessel, two reasons that make it econ- 
omically attractive (cf. Gross [3]). 

The present study is closely related to some earlier 
investigations by the author concerning both steady 
state and transient stratified fluids, They are weakly 
thermally forced at their non-horizontal boundaries 
(Walin [S], Rahm and Walin [6,7] and Rahm 181). The 
study is based on the same theoretical background as 
those mentioned above (Walin [S]), but differs from 

them in that the interest is focused on the transient 
behaviour of the interior tem~rature field in an 
advection-dominated regime. This yields, to leading 
order, a degenerate interior dynamics where diffusion 

To ” 
FIG. 1. Definition sketch showing the cylindrical vessel with 
the ambient temperatures Z’,, F and r;. The material prop- 
erty of the vertical boundary is expressed in the parameter 5. 
A flow M” is forced through the porous horizontal bound- 
aries of cross-sectional area A” in the direction indicated by 
the arrows. The Cartesian coordinate system (x, y, z) as well 
as the ~unda~‘~oo~inate system (i, z) have their z-axis 

oppositely directed to the gravitational acceleration. 
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A0 cross-sectional area 
d thickness of side wall 
k thermal conductivity 
L characteristic length-scale 
MB buoyancy layer transport 
MO through-flow 
s sidewall thermal conductance 
t time 
T temperature 
W vertical velocity 

NOMENCLATURE 

x, y, z Cartesian coordinates. 

Greek symbols 
6 bondary layer thickness 
K thermal diffusivity 

? moving interior coordinate 

;9 

characteristic time 
z buoyancy layer coordinates 

l, y stretched vertical coordinates. 

processes are limited to only “interior” boundary lay- 
ers. Analytical solutions have been derived for these 
time-dependent processes in a simple case with con- 
stant isotropic eddy diffusivity. (This is of course a 
severe idealization of the conditions prevailing in a 
container densely packed with salmon. Nevertheless, 
it may yield a qualitatively correct description of the 
“heat-up” process.) These results agree well with 
numerical solutions of the corresponding non- 
degenerate equations. 

In a companion paper, Hyun and Hyun [4], numeri- 
cal solutions to the Navier-Stokes equations for a 
Boussinesq fluid are presented for the same case as 
discussed in the present work. The numerical solutions 
yield flow and temperature details not readily obtain- 
able from the analytical study. Further, the numerical 
results indicate the range of validity of the approxi- 
mate boundary-layer solutions. 

ANALYSIS 

The theory [5] is valid under the following con- 
ditions : (i) The fluid is strongly stably stratified, yield- 
ing a horizontally homogeneous interior density field, 
and an interior dynamics, in which the momentum 
equations have degenerated into a simple hydrostatic 
balance. (ii) The strength of diffusion is limited, giving 
rise to the boundary layer character of the system. (iii) 
The heat flux through the vertical boundary is limited, 
enabling a linearization of the so-called “buoyancy 
layer”. The interior heat equation then becomes to 
leading order 

(1) 

where K, T and Ware the eddy diffusion coefficient of 
heat, the temperature and the vertical velocity respect- 
ively. The superscripts I and B denote the interior- and 
buoyancy-layer variables. The “interior” coordinate 
system used, (x, y, z), is shown in the definition sketch 
(Fig. I), whereas I is the time variable. Let us assume 
a Newtonian heat flux condition at the curved vertical 

wall, 

aT ^ 
x=f(T--T) at c=O, (2) 

where the c-axis is directed along the inward normal 
from the boundary (see also Fig. 1). f is the ambient 
temperature, which in this case is chosen constant 
but may vary with height without invalidating the 
analysis. If the thermal conductivity of the wall and 
fluid are R and k, respectively, and the wall-thickness 
is d, then s^ is defined by 

After integration around the vessel in a horizontal 
plane of cross-sectional area A0 and utilizing bound- 
ary condition (2), the total buoyancy-layer transport 
becomes to lowest order (according to Ref. [5]) 

MB=-~ 
f_ 

“(T*-f)dl 

aT’’ (3) 

aZ 

The horizontally integrated continuity equation then 
becomes 

MB+ WI-A’= MO. 

Thus W’ can be expressed in terms of T’ and MO (the 
imposed through-flow). Equation (1) is then refor- 
mulated, 

g+$z+$ $(Ti-f)dr=n$ (4) 

which already satisfies condition (2). This equation 
is non-dimensionalized by the following trans- 
formation ; 

(x, Y, z) = ax’, Y’, z’) 

(t) = z(t’) 

(ZJ = AT(T’) 

where AT is also assumed valid for the external tem- 
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perature field. Equation (4) then becomes (after drop- 
ping the primes) 

(6b) 

A, B, and C are ratios of the characteristic time-scale 
r to the imposed flush-time, the buoyancy-generated 
flush-time and the so-called diffusion time. As the 
interest is focused on the advection-dominated 
regime, 

C<<(A;B)- 1. 

This yields to leading order 

(7) 

aT’ aT’ 
z+Ax+B(T’-f) =o, (8) 

Obviously equation (8) cannot generally satisfy two 
boundary conditions simultaneously. Consequently 
the scaling assumptions done break down somewhere, 
indicating the existence of some type of boundary 
layer. 

It turns out that the region containing the fluid that 
initially occupies the interior, with an initial tem- 
perature distribution 

hit 

T’ = T(z) at t = 0 (9) 

can be treated separately from the other region that 
is formed by the imposed flow MO. This can be made 
use of by introducing a moving coordinate system 

t* = t 

g* = z-At. 

It traverses upwards through the container with 
constant speed A in consort with MO. The level q* = 0 
represents an interface separating the two interior 
regions. (The upstream and downstream regions are 
hereafter denoted by subscripts Uand D resnectively.) 
Equation (8) then becomes (drop the stars) 

aT’ 
ar+B(T1-f)=O 

with a general solution, valid in both regions, 

TX = ?i- G(q) exp ( - Bt). 

The bounda~ conditions are (for simplicity) 

*,= 3, at q= I-At (z=l) 

To at q=-At (z=O) 

(11) 

Wa) 
Wb) 

Condition (12b) is ob~inable either by a strong flow 
through a weakly heat-conducting porous bottom or 
vice versa. Condition (12a), however, is only obtain- 
able by a weak through-flow through a strongly heat- 
conducting porous top lid. 

The upstream region : 

-At<v<O; Oft<A-’ 

and 

-At<q< l-At; t>A-‘. 

The solution to equation (IO), valid in the expand- 
ing upstream region, has to satisfy boundary con- 
dition (12b), which at t = 0 becomes its “initial con- 
dition”, 

T1 ,,=: i@+(T,-nexp -z 
( )I 

= ?+(To-i)exp[ - z(q+At)l. (13) 

The downstream region : 

O<q<l-At; OGt<A-‘. 

The solution to equation (IO), valid in the con- 
tracting downstream region, must satisfy initial con- 
dition (9), thus 

&lit 
T’ D = ?+[Z@)-fiexp(-Bt). (14) 

The interior 
The complete interior solution is schematically 

shown in Fig. 2. The evolution of the temperature 
dis~bution in the do~stream region is similar to the 
decaying stratification in a closed vessel subject to 
thermal forcing at its boundaries, which has been 
discussed in Rahm and Walin [7]. The temperature 
decays towards its ambient value at each level, within 
the moving frame of reference, irrespective of the 
strati~~ation in adjacent regions. Though the ampli- 
tude of the initial temperature profile decreases in 
time, its “shape” is preserved. In a lixed frame of 
reference this fluid region is replaced by the upstream 
one. The interface, that separates them, acts like a 
“blind” in that it gradually “exposes” the new steady- 
state stratification, i.e. solution (13). (Note that (13) 
is time-indep~d~t in the Cartesian system.) This 
solution is equivalent to the lowest order steady state 
solution discussed (and experimentally verified) in 
Rahm and Walin [6] for an almost-enclosed fluid 
region with through-flow. However, the complete sol- 
ution cannot satisfy the downstream boundary con- 
dition (12a). Further, there is a ~scontin~ty in 
temperature at the interface. These features suggest 
the existence of “interior” boundary layers, both at 
the top and at the interface. 
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z=Ai 

Tl 
FIG. 2. Schematic representation of the complete time-dependent solution (21) (solid line) in this height 
versus temperature graph. The upstream region has reached its steady state while the downstream one is 
characterized by its transition from the initial state to its steady state (dashed line). Indicated in the figure 
are the thicknesses of both the downstream boundary layer S,( - CA-‘) and the interfacial boundary 
layers S,( - B-“*C”*). The horizontal stippled line denotes the position of the moving interface z = At. 

Further, the ambient temperatures are also shown in the graph. 

The downstream boundary layer 
A stretched variable (in the Cartesian system) 

is introduced, 1 -z = 6, * 5. Simple scale analysis 
yields a boundary-layer thickness 6, - CA - ’ = 
KA’(M’L)-‘, which is sufficiently thin to allow 
heat diffusion to balance the interior advective 
heat flux. The boundary layer equation becomes 

A aPB c a2PB 
6, ag =(6,)2 a<2 ’ (15) 

where the dependent downstream boundary-layer 
variables are denoted by superscript DB. Since the 
characteristic time-scale of the boundary-layer 
dynamics is much shorter than that of the interior 
process, it can match a slowly varying interior in a 
quasi-steady way. The general solution then becomes 

pB = H(t)exp[$(q+At-I)], (16) 

which will satisfy the boundary condition (12a) to- 
gether with the interior solutions (13) or (14), depend- 

ing upon the position of the interface. The solution 
turns out as 

TDB=[T1-T$D(l-At,t)Jexp z(q+At-l) , r 1 
(17) 

where Th,, represents one of the two interior solutions 
which is evaluated at the top. Note that this type 
of boundary layer can only exist at a downstream 
boundary. 

The interfacial boundary layers 
The discontinuity at the interface in the lowest- 

order temperature field is a consequence of the non- 
dissipative interior dynamics. It necessitates “inter- 
mediate” boundary layers (denoted by IB) that match 
the two interior solutions. By stretching q, q = S2*y, 
the boundary layer equation becomes 

c a2TlB ~+~p-_ 
(w ay2 ’ (18) 
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where 6, N C’/2. B- ‘j2 is the fully developed bound- 
ary-layer thickness, which is reached on a time-scale 
equivalent to that of the interior process itself. There 
are two solutions, one for each interior region. Con- 
tinuity requirements in both the temperature and its 
gradient yield 

TIB - 0 “,D - 

T:+Tl= Tb+T’,B 

at t = 0 (19a) 

at 9 = 0 (19b) 

&(T:+ T:~J = $(Tb+ T:) at n = 0. (194 

The complications that arise, as the interface is close 
to one of the physical boundaries, are ignored. The 
solution is readily obtained by Laplace-trans- 
formation ; 

f [D2- $]exp(---BI) (20a) 

hit 

1 P2 POb) hit D = T(O)-To 
2 

[ 1 2 . WC) 

RESULTS 

The complete “interior” solution is composed of its 
various elements ; 

i 

T:+T;+T:+Tb+TDB 

T’ = for O<t<A-’ (21a) 

T:+ pB for t>A-‘. @lb) 

It is valid in the entire interior region except when the 
interface is close to one of its physical boundaries (for 
an illustration of the general solution, see Fig. 2). 
From a mechanistic point of view, the heat-up process 
can be described as follows. The cold fluid that is 
pumped into the vessel through the bottom cannot 
initially pass the vessel via the buoyancy layer as the 
buoyancy-layer transport MB is always determined, in 
the downstream region, by the interior stratification 
and the ambient temperature distribution. It must 
therefore take the route via the interior and conse- 
quently it will “lift” the downstream region. Hence it 
determines the physical location of both the down- 
stream and the upstream regions. In the upstream 
region the interior vertical velocity is weak and 
directed downwards. Hence the imposed flow takes 
the route through the vessel via the buoyancy layer in 

the upstream region, whereafter it enters the interior 
at the level of the interface. The decay towards the 
ambient temperature occurs on a typical time-scale 
B- ’ for both regions while the motion of the interface 
through the container has its own time scale, A - ‘. As 
a conclusion, the heat-up process is rather fast in the 
present parameter range. 

The inviscid interior has, however, discontinuities 
in the temperature field both at the top and at the 
interface separating the two interior regions. This 
degeneracy leads to the previously mentioned “in- 
terior” boundary-layer formation. The two discussed 
types of boundary layers are dynamically very differ- 
ent, something that is also reflected in their typical 
time scales. The interfacial boundary layers have a 
time-scale equal to the interior process itself, B-l, 

while the downstream boundary layer has an adjust- 
ment time of CAe2. (The latter layer is also essential 
in the steady-state solution.) Finally note that the 
internal-gravity oscillations of buoyancy frequency 
are filtered out in this model as is discussed by Hyun 
[2] in a paper dealing with a somewhat similar problem 
but for a completely closed vessel. It will not effect the 
lowest-order temperature field in a significant way but 
the velocity field is severely influenced. 

The behaviour of the system is illustrated by an 
example, see Fig. 3. The analytical solution (21), is 
compared with the numerical solution to the associ- 
ated undegenerate equation (5). The latter equation, 
in its finite difference form, was integrated forward in 
time using an explicit scheme. A linear temperature 
profile was chosen as an initial temperature distri- 
bution. The evolution of the numerical solution is 
illustrated by the instantaneous temperature profile 
for five different times. The numerical “solutions” 
collapse completely on the corresponding profiles 
obtained from the analytical solution. Even for mod- 
erately large values of the “expansion” parameter C, 
the agreement found is excellent, as is evident in Fig. 
4. The analytical solution is slightly “warmer” than 
its numerical counterpart, as may be expected due to 
the degenerate (non-dissipative) governing equation 

(8). 
However, the numerical experiments presented in 

Ref. [4] concerning the same problem show both a 
good agreement with the results of the degenerate 
model and the limitations inherent to the theory for 
both weak and strong thermal forcing. The limitations 
are attributed to endwall effects and the linearization 
of the buoyancy-layer equations (cf. Hyun and Hyun 

141). 

Acknowledgements1 want to express my gratitude to the 
staff of the Department of Oceanography, University of 
Gothenburg, for their help in preparing the manuscript. The 
work herein reported was done while I had a fellowship from 
the Nordic University Group on Physical Oceanography. 

REFERENCES 

1. M. C. Jischke and R. T. Doty, Linearized buoyant motion 
in a closed container. J. Fluid Mech. 71,729-754 (1975). 



0.5 

0 0.5 

FIG. 3. A plot of the complete analytical solution (21) for A = 1, B = 2 and C = 0.002 at time t = 0.2 (a), 
t = 0.4 (b), t = 0.6 (c), t = 0.8 (d) that satisfies the boundary conditions r,, = 0 and Tr = 1. These results 

,n,t 
collapse completely on the numerically computed ones. The initial state T(z) = 0.3+0.62 is indicated 

by the stippled line. The steady-state solution is indicated by (e). 
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FIG. 4. Same legend as in Fig. 3 except that C = 0.02. The corresponding numerically computed solutions 
are also shown in the figure (the dotted lines). 
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SUR L’AJUSTEMENT THERMIQUE DUNE REGION FLUIDE PRESQUE 
CONFINE AVEC UN ECOULEMENT DE TRAVERSEE 

R&nn&On ttudie la dynamique du mtcanisme de rechauffement dans une region de fluide confinee 
horizontalement, avec un ecoulement impose de traversie soumis a un faible forcement thermique. Base 
sur une approximation de couche limite, un modele simple monodimensionnel est concu pour la region 
interieure de fluide. La reponse calculee du champ de temperature s’accorde bien avec les solutions 
numeriques du probleme correspondant monodimensionnel non dtgenere. Les resultats theoriques sont 
en accord raisonnable avec des resultats theoriques present& dans un article d’accompagnement de Hyun 

et Hyun [4]. 

DIE AUSBILDUNG DES TEMPERATURFELDES IN EINEM FAST 
EINGESCHLOSSENEN FLUIDGEBIET MIT DURCHSTRdMUNG 

Zusamrnenfassung-Die Dynamik des Aufheizvorgangs in einem horizontal eingegrenzten Fluidgebiet mit 
erzwungener Durchstromung und schwacher Beheizung wird untersucht. Beruhend auf einer Grenz- 
schichtniiherung wird ein einfaches eindimensionales Model1 fiir den inneren Fluidbereich abgeleitet. Die 
vorhergesagte Reaktion des Temperaturfeldes stimmt gut mit numerischen Liisungen des entsprechenden 
gewijhnlichen eindimensionalen Problems ilberein. Die analytischen Ergebnisse stimmen ziemlich gut mit 

den numerischen Ergebnissen aus der Veroffentlichung von Hyun und Hyun iiberein [4]. 

0 TEPMOPEI-YJIJlLIMM qACTMrlH0 3AKPbITOTO OSSEMA XKM~KOCTM CO 
CKBO3HbIM I-IOTOKOM 

AHiioTfIUH~-~3y~aeTc~ DHHaMHKa IIpOUCCCOB IIpOrpeBa B rOpH30HTanbHO OrpaHH'IeHHOM o6aeMe~wm 

KOCTH C HanO)l(eHHblMCKBO3HbIM IIOTOKOM npLicna6oM IlO,lBOlle Tenna.B nps6nemeses nOrpaHM'iHOr0 

CJIOS nOny'4eHa npOCTa9 OLtHOMepHan MODeJIb LWll BHyTpeHHerO o6beMa XKllnKOCTA. kW3MTaHHOC PXn- 

peneneHtie TeMnepa-rypHoro nons xopot~o cornacyeTcx c wcneHUblM pelueHHeM HeBblpomneHHoi? 

OnHOMepHOti 3anaW. .‘,Hanl,TWeCKMC pe3ynbTaTbI LIOCTBTOVHO XOpO,UO COOTBeTCTByH)T WCnCHHblM 

naHHbIM pa6OTbI [4]. 


